Category Archives: Uncategorized

Mother Jones: The BP Cover-Up

http://motherjones.com/environment/2010/09/bp-ocean-cover-up

ENVIRONMENT

BP and the government say the spill is fast disappearing-but dramatic new science reveals that its worst effects may be yet to come.

Tue Aug. 10, 2010 3:00 AM PDT

WE’RE SWINGING ON ANCHOR this afternoon as powerful bursts of wind blow down through the Makua Valley and out to sea. The gales stop and start every 15 minutes, as abruptly as if a giant on the far side of the Hawaiian island of Oahu were switching a fan on and off. We sail at the gusts’ mercy, listing hard to starboard, then snapping hard against the anchor chain before recoiling to port. The intermittent tempests make our work harder and colder. We shiver during the microbursts, sweat during the interludes, then shiver again from our own sweat.

I’m accompanying marine ecologist Kelly Benoit-Bird of Oregon State University, physical oceanographer Margaret McManus of the University of Hawaii-Manoa, and two research assistants aboard a 32-foot former sportfishing boat named Alyce C. On the tiny aft deck, where a marlin fisher might ordinarily strap into a fighting chair, Benoit-Bird and McManus are launching packages of instruments: echo sounders tuned to five frequencies; cameras; and a host of tools designed to measure temperature, salinity, current velocity, chlorophyll fluorescence, and zooplankton abundance, all feeding into computers lashed into the tiny forward cabin.

Despite the impressive technology crammed aboard the boat, its deployment is pure 19th century. At any given time, two of us man the aft winch, launching the equipment overboard by hand, feeding out dual lines of nylon and coaxial cable, slowly wearing calluses into our gloves as we ease the instruments through the water column at roughly 33 feet per minute. Six feet shy of the bottom, 74 feet down, the rig is hauled back up, collecting data the whole way. The process is repeated around the clock for the next 24 hours, a procedure either monotonous or meditative, depending on your frame of mind. Near the bottom, McManus calls, “Making a mark.” She might as well be calling “mark twain.”

But whereas old-time riverboat captains sounding with lead-weighted ropes were gleaning information about safe shipping channels and shifting sandbars, we’re sounding for signs of life. To the untrained eye, the incoming echo soundings appear as waves of blue, green, and yellow scrolling horizontally across our computer monitors. To the trained eye, they appear as layers of life flooding in on darkness. Benoit-Bird points toward the screens, each one tuned to read the sonar signature of a different-size life form. “That layer is zooplankton,” she says. “And that layer is fish.” Suddenly, I can see a crude facsimile of the migrations of the nighttime sea.

Most of the marine life familiar to us at the surface inhabits the epipelagic zone, the sunlit realm, stretching down to about 600 feet. Yet many whales, dolphins, seals, sea turtles, sharks, manta rays, billfish, and smaller predatory fish are nocturnal hunters, dependent on the mysterious movements of a vast community of organisms known as the deep scattering layer, or DSL. This aggregation of life forms was unknown until the 1920s, when early hydrographers mapping the ocean with sound encountered a daytime “seafloor” around 3,300 feet, which rose perplexingly toward the surface at night. Named for its echo-reflecting signature, the DSL was eventually recognized by marine biologists in 1948 to be layers of living creatures hiding on the cusp between perpetual twilight and darkness.

What the echo sounders of old were actually picking up were the billions of swim bladders (buoyancy floats) of the fish inhabiting the dark realm of the DSL-primarily lantern fish, bristlemouths, and hatchetfish. These fish, generally between one and twelve inches long, are endowed with the usual fishy hardware of fins, scales, lateral lines, and tails. But their habit of hiding in the darkness by day and chasing darkness upward at night led to the development of extraordinarily large eyes and organs, known as photophores, capable of producing light-usually a weak blue, green, or yellowish light-the color and pattern of which signal the fish’s species and gender, as well as information used in shoaling and other communications we don’t understand. The photophores also create a camouflage known as counterillumination. By adjusting internal dimmer switches, these mesopelagic (“middle sea,” or twilight zone) fish match the slightest overhead ambient light level-be it the faint glow of the sun or moon-making their silhouettes less visible to predators above and below.

DSL species rise at night-some to waters as shallow as 30 feet deep-for a variety of reasons: Some are avoiding the daytime surface hunters; others are avoiding the nocturnal hunters of the DSL who don’t rise (like lancetfish); still others are saving energy by spending their days in a sleeplike state prompted by the frigid waters. (The alternative, living only at the warm surface, produces a fast metabolism requiring more food.) Krill, among the most abundant and important invertebrates of the DSL, rise at night to graze on the pastures of the sea: single-celled phytoplankton, plants that survive only in the sunlight zone.

The lantern fish, bristlemouths, hatchetfish, and crustaceans of the DSL are believed to account for 80 percent of all the biomass in the mesopelagic zone, with lantern fish alone making up some 660 million tons of living fish-perhaps the greatest distribution, population, and species diversity of all ocean fish on the planet. The mesopelagic fauna also includes many kinds of squid, krill, and siphonophores and ctenophores (jellyfish-like animals), as well as worms, sea butterflies, and larvae that comprise the DSL zooplankton. The vast life of the deep scattering layer supports the surface life above it, including the $172 billion global seafood and aquaculture industries.

It’s no wonder then that most of the predators of the sunlit sea make their living diving to meet the DSL, which rises like a great dumbwaiter from the deep bearing every manner of seafood delicacy on a platter of darkness. No wonder, too, that the DSL is being eyed by the fishing industry as the last great resource to be exploited.

Not long after dark, dolphins show up on the data stream, monopolizing the monitors with bold red and orange signatures. These are spinner dolphins who’ve spent the daytime hours resting in shallow coastal waters, hiding from sharks, sleeping with eyes wide open and their echolocation shut down. During the couple of years in the ’90s I spent filming a documentary about spinners, darkness marked the frustrating end of our workday, the time we were forced to leave the school behind, to listen wistfully to the sounds of their leaps and spins as they splashed on an ocean surface we could no longer see. They were racing offshore to begin diving into the deep scattering layer. This much we knew. But in filmmaking parlance, it was called “dip to black.” Because what the dolphins did down there in the dark was unknown, and seemingly unknowable.

JUST ABOUT THE TIME WE drop anchor off Oahu, and unbeknownst to us, a catastrophe is being unleashed 4,400 miles and five time zones away, in the Gulf of Mexico. A mile below sea level, methane is shooting up the experimental well drilled by the Deepwater Horizon rig, exploding at the well’s head, killing 11 workers, and igniting a firestorm. After 36 hours of a raging inferno-and still unknown to any of us-the rig will sink and open a valve to the gargantuan reservoir of the Macondo oil field, estimated to contain perhaps as much as 1 billion barrels, or 42 billion gallons, of crude.

Though it won’t be understood for weeks, the Deepwater Horizon is different from any other spill in human history. The extreme technology used to drill at unprecedented depths lacks the extreme safety equipment and protocols needed to stave off disaster. BP, gambling at the border of controllable engineering, has lost spectacularly in its bid to be the deepest and cheapest driller of them all.

And no one is ready for it. Not the Minerals Management Service, catering submissively to BP’s laughable Gulf oil-spill “plan,” a document featuring wildly inaccurate wildlife assessments (including walruses and other species nonexistent in the Gulf) and an on-call expert who’s been dead for years. Not the scientists whose research is paid for by the oil cowboys. Not the environmental groups, who did not foresee the stupendous potential for cataclysm on oil’s farthest frontier. Not the media, who almost entirely ignored the sneak preview offered last year by the blowout of the West Atlas rig drilling in the Timor Sea off Australia-a disaster that required five attempts at a relief well and 74 days to stanch. Far offshore, far from sight, far beyond the typical royalty-paying boundaries, BP and its partners have transformed themselves into modern-day pirates, operating beyond law or conscience. Their reckless quest has endangered and perhaps condemned not just the Gulf Coast, but the largest, richest, most pristine, most biologically important, and last completely unprotected ecosystem left on Earth: the deep ocean.

Despite an ever-expanding estimate of the volume of the spill, relatively little oil washes ashore at first, and only a small portion ever will. Instead, trapped in the deep, the oil fouls the ocean’s twilight and dark zones: the mesopelagic and the bathypelagic (bathos: deep). After April 20, the dumbwaiter rising through the waters of the Gulf of Mexico will be ascending an ocean fouled with a toxic broth of oil, methane, chemical dispersants, and drilling mud. The relatively small amounts of oil washing ashore, and the relief felt when the surface oil began to dissipate, hardly account for the devastation being wrought in the dark world beyond our sight.

SIX WEEKS AFTER THE Deepwater Horizon explosion, I’m aboard a small inflatable Greenpeace boat, bucking the marshy waters of Barataria Bay, Louisiana. A tide change is under way. Incoming and outgoing waters are flowing in opposing directions, battling each other in current lines inked with oil. A continuous flow of vessels chug through the pass-tugboats, barges, mud boats, seiners, trawlers, pirogues, airboats, sportfishers, pleasure cruisers. Some carry crews to and from the thousands of other drilling platforms puncturing the seafloor of the Gulf of Mexico, but the majority are now laden with containment boom and BP cleanup crews.

Dolphins are swimming in the pass too, a few dozen of an estimated 138 to 238 bottlenose dolphins that call Barataria Bay home. They’re hugging the greasy waves of the tidal rip. Like bottlenose dolphins the world over, and like much marine life in general, they’re exploiting the edge where waters of different provenance (temperature, salinity, velocity) hide predators from prey and vice versa. Along these edges, the sensory systems of the sea-sight, sound, pressure wave, magnetic field-are dimmed or distorted, making it difficult to see from one side through to the other. Bottlenose dolphins use the distortions as natural hunting blinds.

These waters have been off-limits to human fishers for weeks. But nobody told the dolphins. They’re actively fishing the tidal rip and following trawlers dragging boom, because these are the same boats that sometimes give them food in the form of bycatch thrown overboard.

“Oil is toxic to most life. And Corexit is toxic to most life. But the most toxic of all is oil that’s been treated with Corexit.”

As best we know, the dolphins of Barataria Bay comprise a closed population whose members rarely if ever leave the bay. In theory, they could now exit, but in all likelihood they’re trapped here by multiple barriers: by oily waters, by seasonal tradition, by cultural habit, by territorial boundaries, and by the availability of food-including fish and other marine life that may be trying to escape the oil by swimming inshore. At the moment, the dolphins are feeding as best they can in home waters that will likely kill them.

Rick Steiner, a conservation specialist from the University of Alaska who’s studied the effects of the Exxon Valdez spill for the past 21 years, discusses these possibilities as we look on helplessly. “The dolphins aspirate oily fumes through their blowholes,” he says. “They’re eating fish exposed to oil. They’re getting oil in all their orifices. They’re bathed in a continual soup of oil. There’s nowhere to go to get away from it. We know from the Exxon Valdez that even those animals not killed outright suffer lesions in their organs, including the brain. They go blind. They experience reproductive failures, changes in their blood chemistry, and possibly multigenerational changes passed down to offspring never even exposed to the oil.”

A few hundred yards away, tucked into the marsh grass on Grand Isle State Park, we see a dead dolphin, half-skeletonized, half-mummified. In the heat and humidity of coastal Louisiana, it is hard to tell if it’d been dead a week or a month. We do know that dead dolphins are washing up along the Gulf Coast in higher-than-normal numbers. We don’t know how many more have died at sea and sunk, never to be counted. On the beach surrounding the dead dolphin are hundreds of hermit crabs coated with a chocolatey syrup of oil, their tracks up the beach splattered as they fled the foul waters. The oil washing ashore is still actively bubbling. “Even though this concoction may have exploded from the well a month ago and has been wending its way ashore ever since, it’s still full of volatile compounds like benzene,” says Steiner. “Benzene’s a known carcinogen, dangerous to human life, too.”

Barataria Bay has become a hospice wilderness, full of dying plants and animals. Nearly all the marshy islands are oiled. The oyster beds covering 10 percent of the bay are dead or dying and now closed to human harvesting. The post-larval brown shrimp migrating into the bay (the estuaries of Louisiana and Texas are home to the highest densities of brown shrimp in US waters) are running an oily gauntlet. So are the speckled trout that normally feast on brown shrimp during their own breeding season. For the first time in my bird-watching life, I’ve seen multitudes of clapper rails-notoriously secretive marsh-dwelling birds-running down levees and roads in broad daylight trying to escape the oiled wetlands.

The fate of the marshes is inextricably linked to the fate of the deep ocean-and vice versa. The deep ocean seeds the marshes with the larvae of fish and invertebrates, which then repopulate the deep in their juvenile or adult stages. These inshore-offshore migrators include ecologically and commercially important species. Fifty percent of the wetlands in the lower 48 states line the Gulf of Mexico and produce more seafood than the Chesapeake Bay, South and Mid-Atlantic, and New England fisheries combined. Endangered Atlantic bluefin tuna, scheduled to spawn right now in the waters around the Deepwater Horizon blowout, migrate here because the Gulf’s marshes-the ocean’s womb-likely shelter and feed their larvae. Adult bluefin, deep divers, are hunting the depths to 3,300 feet in search of squid and crustaceans in the deep scattering layer. BP’s oil will wallop them at all stages of their lives.

At Queen Bess Island, an important seabird rookery near the mouth of Barataria Bay, Steiner and I watch oily brown pelicans trying to preen themselves clean. I visited this same island a week ago; the downy pelican chicks who were still in the nest then are today slipping on oily rocks at the waterline. Where last week there were still a few dozen white pelicans, now there are only two, standing uncharacteristically alone, wings drooping in stress. Steiner points out the pelicans flying overhead, their bellies coated with oil. “Even those birds who are managing to avoid diving into contaminated water to feed are inadvertently floating on it,” he says.

Death by oil is a horrible way to go. Necropsies on birds reveal hypothermia resulting from oiled feathers, malnutrition resulting from the hypothermia, anemia from the shock and stress of hunger, and poisoning from the oil ingested and inhaled during preening. Although a few birds will escape the immediate lethal effects, their eggs and chicks will not. An experiment from the 1980s with nesting Leach’s storm-petrels-tiny seafaring birds breeding on islands off Newfoundland-found that birds exposed to crude oil or Corexit (the dispersant BP is using in the Gulf) lost more eggs and chicks than did control birds. This, even though the oil exposure was sublethal, and even if only one adult of the pair was oiled. Breeding success for adults generally returned to normal the following year-except in the case of birds exposed to the highest sublethal doses of oil or Corexit. Fewer of those birds returned to breed-indicating that their part in the experiment had proved lethal after all.
As bad as it is in Barataria Bay, it’s only the beginning.

FROM THE OUTSET, BP has fought to control every aspect of its uncontrollable catastrophe other than the spill itself. It has wildly spun the numbers on the quantity of hemorrhaging oil. It has continued to dispense Corexit-above and below water-when ordered to stop. It has restricted press access with Kafkaesque flair. Unable or unwilling to skim much oil, BP has poured its energies into skimming up all available resources: renting virtually every hotel room on the Louisiana shores, helping to keep the press at bay; buying the silence of scientists with lucrative pay and confidentiality clauses; chartering nearly every boat on the coast and employing virtually every fisherman and captain made jobless by the spill. I find clusters of these men in the marshes and out in the Gulf, their boats tethered together so they can watch movies on the biggest boat’s DVD player.

“They have to pay these guys to work or else they’ll riot,” says Carl Safina, marine conservationist and cofounder of the Blue Ocean Institute. “As it is, they’re angry, drinking, griping in the bars. By paying them, BP is deflecting their anger. Plus some of them feel like they’re really helping, even though BP’s two prime cleanup methods-setting out boom and using dispersant-completely undermine each other.”

The containment and absorbent boom that BP is deploying around beaches and marshes-largely ineffectively-is designed to do just that: contain and absorb oil. But the Corexit dispersant BP has flooded onto the leaking wellhead 5,000 feet down, and sprayed from the air onto the surface-some 2 million gallons in total-is designed to break up the oil. “Which one is it?” asks Safina. “Do you want to contain it or disperse it? It makes absolutely no sense to be doing both. Let’s face it, with pollution, you count your lucky stars if you have what’s called point-source pollution, that is, a single identifiable localized source of pollution, like the Deepwater Horizon. So what’s BP doing with that? They’re turning it into the worst pollution nightmare of them all: non-point-source pollution.”

That’s because untreated oil quickly rises to the surface, where it can be skimmed with relative ease. But treated with dispersant, it becomes a submerged plume, unlikely to ever float to the surface, and destined to migrate through underwater currents to the entire Gulf basin and eventually the North Atlantic. “Oil is toxic to most life,” says Steiner. “And Corexit is toxic to most life. But the most toxic of all is oil that’s been treated with Corexit. Plus, dispersants may well kill the ocean’s first line of defense against oil: the natural microbes that break oil down for other microbes to eat.” The EPA has never seriously examined Corexit’s effects on marine life (see “Bad Breakup”). Now it’ll get the biggest and baddest field experiment of all time, as the flora and fauna of the shallows and the deep scattering layer collide with the dispersed plumes.

BP’s schizophrenic approach to the cleanup becomes more insidious in light of the company’s legal liabilities: The Clean Water Act stipulates that BP must pay $1,100 for every barrel of oil proven to have been spilled-$4,300 per barrel if gross negligence is determined. But the use of dispersants clouds estimates of the spill’s size, guaranteeing that the true number will never be known-since relatively little oil will ever wash ashore-and guaranteeing that BP’s liability will be vastly underestimated.

Consider that while we’ve all been fixated on the true spill rate-is it 35,000 barrels a day? 60,000 barrels? More?-those figures are only estimates, and only of the oil. Few people realize that some 40 percent of what spews from the Deepwater Horizon well is methane, the primary component of natural gas-a dangerous greenhouse gas and a toxin to most life. Indeed, methane may hold the answer to the quantity of vented oil. David Valentine, a biogeochemist at the University of California-Santa Barbara, suggested in May in an op-ed in the journal Nature that plumes of dissolved methane could be used to calculate how much oil has leaked into the Gulf of Mexico. But BP has blurred the evidence trail-intentionally or otherwise-by treating at least some of the escaping methane with methanol, another toxin, in an effort to prevent a dangerous buildup and possibly even another explosion.

Nevertheless, around the spill site, Valentine and his colleagues found clouds of dissolved natural gas at 100,000 times the normal density and at depths of more than 2,500 feet. They also found that little of the gas seemed to be reaching the air. Which is good news for the atmosphere, but probably bad news for the ocean. That’s because the methane may also be powering up blooms of microbes that eat methane but use up the oxygen in the water as they do so-causing dead zones where most life cannot survive. The Gulf of Mexico is already home to the second-largest dead zone on Earth; the last thing it needs is another. On the surface above the methane clouds, Valentine and colleagues discovered a mass kill of pyrosomes-free-floating colonies of jellyfish look-alikes that straddle the vertebrate-invertebrate divide, and an important food for sea turtles. It’s not yet clear which of many smoking guns killed the pyrosomes. “We’ll be working up the story of the relationship between dispersant, oil, gas, and the microbial community for some time to come,” says Valentine.

Then there are the drilling fluids contaminating the seafloor near the wellhead. Euphemistically called muds, these heavy fluids are pumped into wells to keep the highly pressurized oil and gas from exploding upward. BP’s drilling muds have been pouring out of the wellhead, along with 30,000 barrels added in its failed “top kill” and other efforts to plug the leak. Along with oil, methane, methanol, and Corexit, drilling fluids add their own frightening recipe to the disaster: arsenic, lead, mercury, cadmium, barite, fluoride, chrome lignosulfonate, vanadium, copper, aluminum, chromium, zinc, radionuclides, and other heavy metals. Relief wells require pumping thousands more barrels of drilling fluid into the reservoir, with all the same risks of explosion attending the original well. The EPA estimates these drilling fluids will pose a threat to the seafloor and surrounding waters for up to 40 years. Plus a recent study finds that oil spills create a whole new pathway for arsenic pollution in the sea. The oil prevents seafloor sediments from bonding with and burying arsenic that naturally occurs in the ocean. This shutdown of the natural filtration system allows arsenic levels to rise from the deep water to the surface, disrupting photosynthesis in phytoplankton, increasing birth defects and triggering behavioral changes in marine life, and killing animals that feed on poisoned prey.

The rules of life are different in the gassy depths, where life capitalizes on the same fossil fuels we’re drilling for.

Never before in human history has the vast food web of the ocean-rooted in the dark, and flowering at the surface-come under so many assaults from below, above, and within the water column: marine warfare masquerading as a cleanup.

“WE DOVE DOWN in clear water but came up 30 minutes later through oil,” says Nancy Rabalais, director of the Louisiana Universities Marine Consortium (LUMCON), a research station tucked deep in the marshes of southern Louisiana in the village of Cocodrie. A few weeks after the spill, during her summer research surveys 10 miles offshore, Rabalais personally encountered BP’s plumes, which will probably affect her research far into the future. “It was horrible,” she says, grimacing. “We were covered. Our gear was covered. We were breathing fumes and tasting oil.”

The last time I saw Rabalais, after Hurricane Katrina in 2005, LUMCON was trashed: the station evacuated, the marshes littered with drowned trees, broken boats, unroofed houses. The area is ruined in a whole new way today. Along with the oil, dispersant, benzene, and everything else creeping into the bayous, Cocodrie has become a staging point for BP-complete with Louisiana National Guard troops, workers recruited from all over the South, and fishermen hired away from their extinct jobs. These men are cashing in their lunch chits at the Coco Marina restaurant, where Rabalais, Ed Chesney-LUMCON’s fisheries biologist-and I are grabbing a meal. We watch every manner of boat known to Louisiana speed up the narrow channels to the marina, their white hulls stained BP brown, their wakes slapping the cordgrass flat. The boats offload hundreds of hungry men.

Rabalais is worried about the species already under enormous stress from a host of other environmental problems in the Gulf: dead zones, overfishing, chronic oil pollution, seismic testing for oil and natural gas, coastal erosion (see “Fate of the Ocean,” March/April 2006 issue). “Brown pelicans just came off the endangered species list,” she says, “and now some of their most important breeding rookeries are getting hit with oil.” She’s concerned about critically endangered Kemp’s Ridley sea turtles, the rarest on Earth, a species that faced mortal threat from the 140 million-gallon spill at the Ixtoc I drilling platform in the Gulf in 1979 (see a map of the world’s biggest spills here). Kemp’s Ridleys breed almost exclusively in the Gulf, with virtually every female returning to lay her eggs on a stretch of beach south of the Texas border.

In the wake of the BP spill, there’s been a spike in sea turtle deaths, the majority of them Kemp’s Ridleys. The number is certain to rise, since some sea turtles feed in the DSL, and most enjoy a meal of jellyfish. Sadly, they also eat blobs of oil they mistake for jellyfish. According to some reports, sea turtles have been roasted alive in the surface-oil patches burning offshore. Hundreds more have drowned since the disaster began. One shrimp fisherman privately admits that panicky colleagues fished hard in the weeks after the spill, knowing that the fishery would soon be closed, and some tied shut the mandatory turtle-excluder devices, which save turtles from drowning but reduce the efficiency of their nets.

Rabalais and others also worry about the Gulf’s sperm whales, which feed on squid living in the deep scattering layer. An estimated 1,665 sperm whales inhabit (and perhaps never leave) the northern waters of the Gulf. A recent National Oceanic and Atmospheric Administration (NOAA) assessment calculated that even three additional deaths (by other than natural causes) could endanger the entire sperm whale population, since the whales breed infrequently and only in midlife. The whales favor the deep waters of Mississippi Canyon-the location of the Deepwater Horizon wellhead. On numerous occasions, they’ve been seen swimming through thick oil in that region. And it’s not only sperm whales. The Gulf is home to 29 species of cetaceans, many of which feed on the DSL, including spinner dolphins, spotted dolphins, pilot whales, killer whales, and many secretive deep divers such as beaked and bottlenose whales. The filter-feeding whales-including the Gulf’s tiny isolated population of Bryde’s whales, plus humpbacks, fins, minkes, and sei, many of which are DSL feeders-are vulnerable a whole different way, since oil fouls their baleen (sievelike teeth), dooming them to starvation.

And then there are the 400 Florida manatees, a species classified as vulnerable to extinction, that migrate to Louisiana waters each summer. This year they’ll be feeding in oily water on oiled algae and cordgrass. “And it’s not just the large fauna we worry about,” says Rabalais. “The entire wetland is at risk. A marsh that’s been heavily oiled becomes anaerobic at the roots. The next time a big storm comes through, those marshy islands will in all likelihood just break up and disappear.” If so, they’ll take the nursery grounds for marine life with them. Coastal Louisiana is already losing 24 square miles of wetlands a year, a football field every 30 minutes. These dwindling wetlands are crucial to the Louisiana economy, keeping people here afloat in businesses from fishing to tourism. “Now they’re all out of work,” says Rabalais. “And the revenues we were counting on to rebuild the coastal habitats to foster the birds, shrimp, fish, dolphins, turtles, whales, and people will be lost.”

Least certain of all is what’s happening to the life at the bottom of the Gulf of Mexico. Take the life that congregates around cold methane seeps, the first of which ever discovered was found in the Gulf in 1984. Since then, 50 more sites have been located in these waters, some close to the Deepwater Horizon, with hundreds more likely out there-all home to otherworldly collections of crustaceans, snails, bacterial filaments, and tubeworms. The rules of life are different in the gassy depths, where life capitalizes on the same fossil fuels we’re drilling for. Some cold-seep tubeworms have lifespans of 250 years. Others recently found in the deepest seeps may live to 500 or 600 years.

Though some of these creatures feed on methane, that doesn’t mean they can survive the spill. “The quantity of oil and the added effects of dispersants are likely to harm these communities,” says Lisa Levin, a biological oceanographer and cold-seeps specialist from the Scripps Institution of Oceanography. Oil could smother the animals’ feeding apparatus or suffocate the bacteria at the base of the food chain, she adds. “The tubeworms and other seep organisms, including perhaps deepwater corals, are so slow-growing that damage will likely be long lasting.” Levin envisions a host of long-term chronic problems throughout the deep Gulf that might not even show up for decades.

Only 25 miles from the Deepwater Horizon blowout, a tremendously rich area known as the Pinnacles hosts deepwater corals 300 to 500 feet below the surface. One of the Gulf’s invisible splendors, these ancient reefs line the outer continental shelf south of Mississippi and Alabama. During the last ice age, when today’s continental shelves were dry land, the Pinnacles were living coral reefs near the shoreline. Nowadays the fossil reefs lie too deep and dark for most reef-building corals or phytoplankton to survive. Instead, they’re largely fueled by zooplankton, which power rich deepwater communities of soft corals, sponges, feather stars, black corals, solitary hard corals, and predatory fish, including reef fish not found in shallow waters. The site is also a critical spawning habitat for commercially important species like grouper and snapper.

“We lack even a good picture of life in the deep Gulf,” says Ed Chesney. “Now we may never know what’s been done to it.” It’s the classic iceberg equation: a nine-tenths submerged hazard, lurking unseen in the darkness. The big question: Will it wreck the Gulf of Mexico? “The best thing that might happen now,” says Chesney, a battle-scarred veteran of Hurricanes Katrina, Rita, Gustav, and Ike, “is for one, two, three, or four hurricanes to blow through and bury all this pollution under layers of sediment.”

His thinking is that the tons of silt accompanying storm surges would inter the contamination and prevent it from migrating further, while more silt stirred up offshore would provide particles for the emulsified oil droplets to adhere to and sink to the bottom. Huge offshore waves could also trigger subsurface landslides to bury some of the polluted seafloor under clean sediment: nature’s dip to black.

Yet the potential benefits of hurricanes are accompanied by obvious risks. Hurricanes will drive pollution further inland. The 33,000 miles of pipeline in the Gulf’s waters and marshes are critically vulnerable to hurricane-induced waves (see chart). Seven weeks after the Deepwater Horizon spill, naval scientists released the results of research conducted when Hurricane Ivan swept through the Gulf in 2004. It found these pipelines to be far more vulnerable than previously thought to deep storm currents, which slosh for up to a week with enough force to break pipelines 300 feet deep. Plus every hurricane in this storm-prone region threatens the cement seals on 50,000 holes punched into the floor of the Gulf: some wells in deep water, many in the shallows, 27,000 of them abandoned and unmonitored, 600 once run by BP. The passage of Katrina spilled 8 million gallons of oil from platforms, pipelines, ships, and storage tanks-three-quarters as much oil as was dumped by the Exxon Valdez.

All of which adds up to the realization that our collective “don’t ask don’t tell” attitude toward the deep ocean-mining it, drilling it, overfishing it, dumping in it (including nuclear waste), polluting it, and deafening and killing its life with lethal sounds produced by the drilling industry and the military-is a prescription for ruin. “It’s not that we were totally unprepared for the possibility of the Deepwater Horizon,” says Carl Safina, “but that we were so spectacularly unprepared for its inevitability.”

IRONICALLY, THE TOOLS Kelly Benoit-Bird and Margaret McManus are employing in Hawaii to decipher the deep scattering layer were developed by the offshore oil and gas industry and the military. “The DSL was a hot topic during the Cold War,” says Benoit-Bird, “but only its acoustic properties, not its biological properties. American and Soviet navies wanted to know how to use its sound-reflecting properties to hide their submarines.” In the 21st century, the application has shifted to the oil industry’s fight to drill deeper, a battle spurring technological innovation in echo sounding and imaging equipment-including the “spill-cam,” whose footage BP was finally pressured into releasing. “As offshore rigs proliferate and get deeper,” says Benoit-Bird, “the once-prohibitively expensive gear attending them became cheaper and more accessible, to the point where the smallest players, the research scientists like Margaret and me, can now afford some of it.”

The data streaming in from the waters off Oahu-the yellow, green, red, and blue bands scrolling across the computer monitors-are unprocessed data, designed to signal that the submerged gear is working correctly. Back in Benoit-Bird’s office at Oregon State University, I watch the information transform into geek IMAX. The animations show spinner dolphins gathering in a circle of 16 to 28 animals, always an even number, each dolphin paired with another, the pairs arranged in an echelon formation: one animal slightly above and ahead of the next, while maintaining about three feet of separation. A perimeter of roughly 300 feet is precisely maintained as the dolphins swim in an undulating circle, trapping the fish inside the net of their swimming bodies.

One after another, in fixed sequence, two dolphin pairs directly opposite each other dart into the ball of fish to feed. As they return to the circle, four more follow. And so on. The action is extremely fast, the dolphins darting in to feed at a rate of roughly 1.25 prey per minute, all while swimming and circling in their roller-coaster pattern. After five minutes below, each pair has engaged in four feeding dashes, and the dolphins simultaneously surface to breathe. They typically grab only one or two quick breaths before diving, repeating the underwater rodeo over and over throughout the night without rest. “Our research indicates that spinner dolphins are forced to fish hard and continually all night,” says Benoit-Bird, “and to catch the biggest of these tiny four-inch-long fish they possibly can in order to meet their metabolic requirements.”

In other words, they exploit a different kind of edge-the fine line between survival and starvation. This precarious balance tips back and forth across the food web of the deep scattering layer. “In order to really understand what the dolphins are doing,” says Benoit-Bird, “we had to understand what their prey are doing. And in order to do that, we had to decipher what’s behind the movements of the deep scattering layer. This investigation led us incrementally backward over time towards the smaller and smaller organisms-which, as it turns out, drive the entire system.”

Margaret McManus was part of the team that first discovered a remarkable phenomenon rewriting our understanding of ocean dynamics-the formation of thin plankton layers in the ocean. These congregations of plankton, both the plant and animal varieties, may extend for many miles horizontally but inhabit a few feet on the vertical scale-sheets of life packed far, far more densely with life than the water just above or below them. The formation of thin layers is driven by the chemistry and physics of the ocean, as well as by the organisms themselves. Off Hawaii, they tend to form where cooler waters well up from the deep during tide changes.

McManus and Benoit-Bird have found that DSL fish will swim hard against prevailing currents in order to get to these dense aggregations of life. It’s an energy-consuming choice offset by the rich feeding rewards. In Benoit-Bird’s data animations, single fish dive into a thin zooplankton layer and swim up and down, back and forth, eating a doughnut hole in the layer. The spinner dolphins do something similar: diving to find patches of lantern fish that they then corral increasing the prey density by up to 200 times. “It’s so congested in there for these nonschooling fish of the DSL,” says Benoit-Bird, “that they’re probably bumping into each other in confusion.”

The emerging picture is one of an incalculably complex, finely tuned, and delicate interaction between predators and prey, chemistry and light, currents and water column, night and day. Some semblance of this spatial ballet, played in weightless three-dimensional darkness, has likely been part of the oceans since the oceans were brought to life: layers of life gathering in extremely high densities to feed or to avoid being eaten.

So what happens if you add millions of gallons of oil, dispersant, methane, and drilling fluid into the dense mix?

“We know that the deep scattering layer in the Gulf of Mexico-like the DSL everywhere-supports huge numbers and biomass of life,” says Benoit-Bird, who has spent time studying the Gulf’s sperm whales. “We know the DSL is super important to the life of those waters. We know it’s constantly on the move, not only up and down, but inshore and offshore, back and forth, every day and every night. This greatly increases the likelihood that any given animal or layers of life will be exposed to the pollutants at some point in the course of their travels. And each of these exposures will cascade up and down through the food web.”

Some early observations of the effects of the Gulf catastrophe suggest the daily vertical migrations of the animals of the deep scattering layer may be blocked when they encounter plumes of oil and contaminants. If so, then trapped below a plume, the DSL fish and invertebrates would be unable to access their prey. Trapped above, they would be unable to escape their predators. Trapped within, they would probably die-and in their deaths, poison those who eat them. For the ocean, any loss of productivity in the deep scattering layer would be the biggest cataclysm of all-impoverishing the surface waters, depleting the coasts, cascading across the boundaries between ocean and land to denude both natural and human economies.

BEFORE BEING WAYLAID by the oil tragedy, I was investigating the emergence of a better future for the ocean-one in which we could use our scientific and technological genius to create a new, exciting, and profitable relationship with our water world, a relationship based on respect and sustainability. I spent a few weeks in Hawaii, where the larvae of many promising ideas are circulating on scholarly and entrepreneurial currents.
At the University of Hawaii-Manoa, I met Luis Vega, who drifted years ago from his natal shores of Peru and landed in American academia. His shock of white hair and his melancholic, ironic air give him the guise of a poet. He told me that when he was working on clean energy in the Jimmy Carter years, he was a popular man. Then he weathered decades of solitude. “Now I’m popular again,” he smiles self-deprecatingly.

Vega is one of the foremost modern developers of OTEC (ocean thermal energy conversion) technology. He managed the design, construction, and operation of an experimental OTEC plant for the production of electricity at the National Energy Laboratory of Hawaii Authority (NELHA) On the Big Island from 1993 to 1998. Today Vega has a new grant, via the Department of Energy and Lockheed Martin, to essentially see if the technology is suitable for commercial investment. “Today, while we talk about wind, solar, and wave power,” says Vega, “we’re ignoring this energy inherent in the ocean, a source far more powerful, far more consistent, than any of those. The beauty of OTEC lies in its unshakable ability to provide energy 24/7, without any of the vagaries of wind, solar, or wave.”

OTEC runs on the temperature differential between the ocean’s deep dark waters and its warmer sunlit zone-the same differentials the creatures of the DSL exploit. In a closed OTEC system, warm surface waters are pumped through a heat exchanger to vaporize a low-boiling-point fluid, like ammonia. Cold deep seawater is simultaneously pumped through a second heat exchanger, creating a gradient that drives the vapor through a turbine to generate electricity. Finally, the cold seawater condenses the ammonia back into a liquid, to be recycled through the system. Both Japan and India are also experimenting with OTEC power plants.

OTEC isn’t the deep water’s only use. At NELHA, the two cold-seawater pipes built for the last OTEC experimental plant today deliver water from between 2,000 and 3,000 feet deep to dozens of surrounding businesses. The 43-degree, extremely clean water enables aquaculture farms to grow cold-water seafood like Japanese abalone, flounder, oysters, and Atlantic lobster in the tropics. The deep water is also being used to raise aquarium fish and helps grow spirulina at one of the largest algae farms on Earth. The hope is that these methods could one day offer a sustainable alternative to wild-caught fish, especially disappearing species, like tuna.

But generating scalable commercial power would clearly be the killer app. The way Vega envisions our energy future, the first generation of OTEC “plant-ships” would be stationed offshore and send electricity via subsurface power cables to shore stations. Then, in 20 or 30 years, the technology would develop to the point where “grazing” OTEC plants could decouple from the land and roam tropical waters in search of the best temperature differentials.

These second-generation plant-ships would exploit those differentials, using the energy to break down seawater and create energy-rich compounds like hydrogen or ammonia. Either could essentially serve as a battery-holding energy as it’s transferred to land. And in the case of hydrogen, there might be a robust infrastructure in place to distribute liquid hydrogen (such an infrastructure is being built in California) to be used in fuel-cell vehicles.
Figuring out how or whether OTEC or any of these other alternate energy technologies can provide us with a livable future will take serious investment. Yet until now we’ve barely acknowledged the true costs of subsidizing “cheap” oil: not only the $4 billion a year in actual subsidies, but climate change, the risks to human health, environmental degradation, and disaster. In the wake of the Gulf of Mexico tragedy, alternative energy sources-OTEC, wave, tide, wind, or solar-no longer seem utopian, merely sane.

On the Big Island of Hawaii, the NELHA deepwater pipes run up near a beach park on the shoreline. In the early morning, I see a school of spinner dolphins in the blue water just beyond the breakers. Their night’s intensive work finished, they’re leaping and spinning their way back to shore. During my years filming spinner dolphins, I sometimes joined them underwater during their morning return to land. The sight was a marvel of speed and grace, dozens of slender bodies streaming below the surface at velocities that transformed the school into a waving, blurry contrail of gray and white and black. For me, stationary in the water while the spinners streamed past, as the sun ignited the twilight water, it felt like being inside the eye of a hurricane of intensive, productive, pure energy.

On the shores of the Gulf of Mexico, as black doom wells up from the seafloor a mile down, I find oil on beaches repeatedly cleaned by hazmat crews. All I have to do is lean down and scratch an inch into the sand to find goop. It occurs to me that a new stratum is being written in the geological logbook of the Gulf of Mexico, perhaps someday to be known as the BP dark layer. Will history record it as the oily seam marking the end of an untenable energy era and the beginning of a better one?

A dip to black isn’t always the end of the story. Sometimes it’s followed by a fade up from black and a whole new scene.

If you liked this story by Julia Whitty, don’t miss her features on mass extinction, the fate of the ocean, and the planet’s 13th tipping point.

Julia Whitty is the Environmental Correspondent for Mother Jones. Her latest book DEEP BLUE HOME : An Intimate Ecology of Our Wild Ocean will be out in July. For more of her stories, click here.

REPORT, BABY, REPORT
Mother Jones deployed four crack reporters to cover the BP/Deepwater Horizon spill. Read their daily stories at MotherJones.com and follow their Twitter feeds for up-to-the-minute updates.

Julia Whitty
was researching oceanic technology when we retasked her to the Gulf. She reunited with researchers she’d met reporting on our troubled seas in 2005. Follow her: @juliawhitty.

Mac McClelland’s
stories on press restrictions, pitiful cleanup efforts, and BP workers gone wild have been noted by the likes of PBS, Newsweek, and Salon. Follow her: @macmcclelland.

Kate Sheppard
is our energy and climate reporter. She was one of the first to write on the interplay between the spill size and liability, as well as shoddy dispersant regulations. Follow her: @kate_sheppard.

Josh Harkinson
A Texas native and chronicler of MMS misdeeds, Josh dipped into his Rolodex to bring us inside stories of what happened on the day the rig exploded. Follow him: @joshharkinson.

Special thanks to Richard Charter

Truthout: Gulf Coast Fishermen Challenge US Government Over Dispersants

truthout.org

Tuesday 10 August 2010

by: Dahr Jamail, t r u t h o u t | Report

Commercial fishing communities in Alabama, Mississippi, Louisiana and Florida have united to demand that local, state and federal agencies force BP to discontinue the use of toxic dispersants and conduct better testing before reopening fishing waters.

“We need to get our government to get a handle on this situation and shut down our fishing waters until they test for dispersants and get the use of dispersants stopped unless they can prove to us they are not harmful,” Kathy Birren, a spokesperson for commercial fishermen in Florida, told Truthout. “We are seeing fish kills. They [US Government and BP] are covering this all up.”

Since the BP oil disaster began in late April, the secretary of Louisiana’s Department of Wildlife and Fisheries (LDWF) was granted emergency powers to open and close fishing areas. The department recently announced the opening of three shrimp management zones for August 16. These areas include zones that have been severely affected by the oil disaster. Dates were also set to open fishing for sea trout and harvesting oysters.

These moves are being questioned by commercial fishermen, who are skeptical of the motives of the state and federal governments’ decision to begin reopening fishing areas that had been closed by the oil disaster.

Clint Guidry is a Louisiana fisherman and on the board of directors of the Louisiana Shrimp Association, as well as being the shrimp harvester representative on the Louisiana Shrimp Task Force created by Executive Order of Louisiana Gov. Bobby Jindal.

“The government, both state and federal, is pushing to open all these fishing areas back up and say it is OK, but this is a load of shit,” Guidry, who is from Lafitte, Louisiana, told Truthout. “It’s not OK. They claim 75 percent of the oil is gone or accounted for, but there’s still oil coming in. There is more oil in many of our bays, right now, than there has ever been.”

Guidry and Birren believe it is far too early for the state or federal governments to allow fishing to resume without more testing for oil and dispersant contamination.

“The government is not testing fish for dispersant,” Birren, who is from Hernando Beach, Florida, said. She pointed out that while the west coast of Florida remains largely unaffected by the oil disaster so far, she is concerned about how the Gulf seafood market is being deleteriously affected by the oil disaster.

Her main concern is with the health of people living on the Coast. Another of her concerns is that, without better testing, if contaminated seafood is sold and makes someone sick, the entire market will collapse. “We know the only test they are doing is a smell test on fish,” Birren added, “There are lots of things you can be hurt by you can’t smell. You’re taking these fish and shrimp and putting them on the market and all of the sudden you have a very serious situation. Our fish are healthy, but if other Gulf States are putting contaminated seafood on the market, we’ll lose our market and the trust in the industry. They’ve opened up many fishing areas very recently and it’s all in the name of money and minimizing BP’s liability.”

Regarding BP, Birren said, “They are letting the person who committed the crime clean up the crime scene.”

Along with Birren and Guidry, commercial fishermen from Alabama and Mississippi met last week in Biloxi to discuss other unresolved problems associated with the BP oil disaster such as the difficulty of processing claims, unfair hiring practices of the BP Vessels of Opportunity (VOO) Program and lack of jobs.

In the wake of the Deepwater Horizon explosion on April 20, more than 30,000 commercial fishermen and seafood industry related jobs have been lost. Shrimp factories and processors are refusing to buy daily catches due to the negative perceptions of health hazards regarding Gulf seafood.

This newfound alliance of Gulf Coast commercial fishermen is also concerned with the overall health of the Gulf Coast fisheries, as they feel they have been “forever altered as 2 million gallons of chemical dispersants have been sprayed. Studies have shown dispersants mixed with oil are more hazardous than oil itself due to ability for spawning fish to consume small droplets of oil.”

Fishermen in the four aforementioned states are also concerned about the BP claim process, stating that it has become “increasingly difficult as no documentation is given to claimant,” and, “individual claim amounts have decreased by 80%.”

Demands of the commercial fishing community from Alabama, Mississippi, Louisiana, Florida include closing “all fisheries waters until harvests go through chemical dispersant testing,” as well as having “the EPA and Coast Guard to discontinue current chemical dispersant use and test all seafood and fisheries with updated testing protocols.” The group also wants local commercial fishermen to be hired and trained “for all hazardous testing initiatives and clean-up work in a culturally competent manner,” and for “Federal, state and local agencies to develop community based health centers to service at-risk seafood industry population, administer blood tests for those who are exposed to dispersants and oil-clean up.”

The main concern right now is that the federal government is continuing to allow BP to use the toxic dispersants.

Hugh Kaufman, an Environmental Protection Agency (EPA) whistleblower, who has been warning about the high toxicity of the dispersants BP has been using with both Coast Guard and EPA approval, stated on “MSNBC” on August 4:

“The dispersants, mixed with the oil and the water, is extremely toxic. The only real purpose of using so many dispersants on the oil is to cover up the volume of oil that was released from that well. That and lying about how much [oil] was coming out, was a mechanism to help BP save billions of dollars in fines.”

Kaufman went on to say that dispersants should never have been used and added, “I was listening to some of the ‘experts’ at universities being paid by BP who are saying that the oil has disappeared. It hasn’t disappeared. It’s throughout thousands of square miles in the Gulf mixed with the dispersants. And because the temperatures down there are so cold, they’re going to be around for decades.”

Kaufman’s concerns mirror those of the commercial fisherman, as he concluded, “We’ve now poisoned thousands of square miles of the Gulf and we have to recognize that and take precautions so that we can minimize the damages we have done.”

Guidry is also calling for immediate testing for dispersants before any fisheries can be opened in the Gulf. “Without any clear cut scientific testing that would say it [fish/shrimp] is safe from dispersants, we can’t do this,” he explained, “The oil didn’t just go away overnight and they have huge concerns about the cleanup.”

Guidry told Truthout that all the commercial spokespeople at the meeting last week shared this concern: “It seems the feds are more concerned with limiting BP’s liability than anything else.”

Guidry feels that, so far, all of the interim National Institute for Occupational Safety and Health reports “are covering up health problems. There is an effort by BP and the feds to relieve BP of the responsibility of paying respiratory illness claims. We’re going to wind up with a bunch of sick people across the Gulf before this is over and they’ll have no recourse. It’s already happening. Some of the fishermen who went to West Jefferson hospital when this thing first started, they were out at the source and they were chemically exposed. That just got covered up like it was nothing and blamed on food, heat stress, but it was like it all went away and they buried it. We’re going to see health problems in the next five to 20 years and BP is relieved of the responsibility and I just don’t think that is right.”

Birren also told Truthout she is concerned that the state of Florida might be playing a role in allowing BP to continue to use dispersants in order to hide the oil from tourists in an effort to protect the state’s multi-billion dollar tourist industry. She said that supposedly BP had stopped using the dispersants, “But we have fishermen in the VOO program taking pictures of them using it and people still getting sick from exposure. They are hiring companies to come in and use dispersant at night. You see the oil in the day and then next morning it’s gone. The government isn’t pushing to have this stopped even though they know this is going on. They are doing it because of money and our economy.”

Birren also told Truthout that fishermen she knows, who are speaking out against BP dispersant practices, “are getting death threats and notes on their cars saying you better watch out, because there are people above us who want to keep this quiet. But I know entire families who are sick because of the dispersants.”

Birren does not believe the crisis is over and believes the Gulf and inland waters have been “prematurely re-opened to fishing.”

She and the coalition of commercial fishermen she and Guidry are a part of are concerned about the credibility of Gulf Coast fishermen being damaged by contaminated seafood being delivered to the market. Birren also wrote, “As fisherman, we know that the use of dispersants has made this crisis vastly worse for everyone. It is time that government step up and protect us, our Gulf and the American public from further and possibly irreversible harm.”

“It’s now down to regular people like me trying to do what the government should be doing to take care of us,” she told Truthout. “It’s awful, it’s really bad. If Obama is not going to be a strong enough president to protect us, we’ll have to do it ourselves. We’re on our own down here.”

Guidry told Truthout that fishermen he is talking with are reporting the ongoing use of dispersants as well. “They [US Government] are trying to just let BP off and this is like nothing I’ve seen before,” he explained. “People with that much money that can bury the American people with the blessing of the federal government. They [BP] can buy all the local, state and federal officials and the crisis is still happening. The feds and BP are wishing it away. I wish we could do that, but we can’t. There’s going to be a lot of hard work, suffering and misery before this is over and it’s not over by a long shot.”

This work by Truthout is licensed under a Creative Commons Attribution-Noncommercial 3.0 United States License.

Dahr Jamail, an independent journalist, is the author of “The Will to Resist: Soldiers Who Refuse to Fight in Iraq and Afghanistan,” (Haymarket Books, 2009), and “Beyond the Green Zone: Dispatches From an Unembedded Journalist in Occupied Iraq,” (Haymarket Books, 2007). Jamail reported from occupied Iraq for nine months as well as from Lebanon, Syria, Jordan and Turkey over the last five years.

Special thanks to Richard Charter

Dr. Mark Whiteside: Gulf Eco Disaster

(1) HOW IS THE MACONDO OIL SPILL DIFFERENT FROM OTHER SPILLS?
The BP Deepwater Horizon oil (Macondo) spill is now the largest in history, exceeding the 1979 Ixtoc leak in Mexico. It is the deepest leak, a mile down into the Gulf of Mexico (the Ixtoc was 160 feet). Unlike an isolated event like a tanker spill, it is a continuous leak without a defined end point. It is an eruption of crude oil and methane gas (40% of total) at high pressure emanating from two miles under the ocean floor. Much of the gas and oil is trapped in layers under water. It is actually a twin disaster: an oil slick subject to winds and surface currents, and a toxic soup of chemicals under the water steered by deep ocean currents.
(2) WHAT IS THE BIG PICTURE OF THE OIL SPILL?
This oil spill is not only an ecological disaster, but an economic and cultural catastrophe. The environmental and economic impacts are nearly unimaginable and will last for decades. The oil spill affects the food chain from deep water to surface currents to shoreline habitats and onto land. The devastating effect on fishing, recreational activities, tourism, and culture will expand in size and dimension. The Gulf of Mexico has been irreparably harmed and an unabated flow of oil threatens the world’s oceans. This oil spill is a grievous wound on our planet.
(3) WHAT ARE SOME OF THE BODILY THREATS TO WILDLIFE AND PEOPLE?
There is a triple threat from this disaster that includes oil, methane gas, and chemical dispersants. Oil affects animals and people in a similar manner; by direct contact, ingestion, and inhalation. Crude oil contains carcinogens like benzene, and aromatic polycyclic hydrocarbons that cause respiratory and nervous system damage. Toxic substances (found in oil) like mercury, lead, and arsenic build up in the food chain and stay in the environment for years.
Methane gas is an unappreciated pollutant. Most of the gas from the Macondo spill stays in underwater plumes along with components of oil. Microbes use up oxygen when they ingest methane, and this oxygen is needed for further breakdown of oil. When oxygen in the water is depleted it creates dead zones. There is already a large dead zone around the mouth of the Mississippi River caused by agricultural run-off. Dead zones will spread to a large area in the Gulf of Mexico.
Chemical dispersants have been used in massive amounts on surface oil and (for the first time) mixed with gas and oil on the ocean floor. Dispersants keep oil out of sight but they keep toxins hidden in the environment. These chemicals are harmful to fish, crustaceans, and mollusks. They can be lethal to deep sea plankton and worms. A study in Israel showed dispersants were harmful to coral reefs, killing organisms and retarding growth.
Corexit, a dispersant used by BP, has ingredients like butoxyethanol which acts like an anesthetic agent and causes nervous system disease, blood, and kidney disease in people and animals. Propylene glycol, another component, has skin and respiratory effects. Dispersants are volatile and enter the air, posing a risk to clean-up workers. An earlier, more toxic version of Corexit was used in the Exxon Valdez oil spill.
(4) WHAT IS THE EFFECT OF OIL ON COASTAL MARSHES?
Coastal marshes and estuaries are vital to the ecosystem and serve as the most important nursery for marine life. They act as a barrier to storms and prevent inland pollutants from entering the ocean. Coastal marshes and estuaries are nutrient-rich feeding grounds for birds and animals. Louisiana has one-third of the coastal wetlands in the lower 48 U.S. states. The inter-tidal zone of marshes situated on the shoreline is the most productive. Oil kills these marshes, and it is almost impossible to remove.
(5) WHAT IS THE EFFECT OF THE SPILL ON FISH?
Coastal marshes are nurseries for many fish, so their fate is intertwined. Fish eggs and larvae are found on the surface of water and are susceptible to oil and its byproducts. Adult fish can swim away from dead zones but fish like grouper and snapper venture close to shore to spawn. Previous oil spills have seen a 40% reduction in species of prey fish that lasts several years.
Menhaden is a top commercial fish in the U.S., used for everything from fish oil to animal food. Menhaden spend the first few months of their lives nibbling marsh grass. If you lose the marsh, you lose the menhaden. The Atlantic blue-fin tuna is a critically-endangered fish that uses the northern Gulf for spawning in April and May. The endangered smalltooth sawfish and the Gulf sturgeon are both threatened by the oil disaster.
Fish and organisms living at or near the sea floor are in the cross-hairs of this oil disaster; this includes soft-bottom fish such as Atlantic croaker, sand seatrout, Atlantic bumper, and sea robin. The hard-to-detect oil/dispersant mix is likely to rain down and wreak havoc on the unique deep water coral reef of Viosca Knoll, close to the BP oil leak.
Sharks are impacted by the Gulf oil spill. A major spawning ground for several shark species resides in a seagrass area south of the Chandeleur Islands, close to the Deepwater Horizon spill. The largest fish in the world, the whale shark, which lives on plankton, congregates in this area and has been spotted swimming in oil-contaminated water.
(6) WHAT DOES OIL DO TO SEAFOOD LIKE OYSTERS, SHRIMP, AND CRAB?
Oysters, shrimp, and crab and their larvae are decimated by oil in coastal marshes and estuaries. Oysters are filter feeders and can’t get out of the way of oil. All of these animals feed on plankton which is smothered and killed by oil. Lousiana produces 50% of shrimp, 40% of oysters, and 35% of crabs in the U.S. Lousiana’s 2 billion dollar oyster industry has come to a standstill.
(7) WHAT IS THE EFFECT OF OIL ON SEA TURTLES?
In a word, devastating. Five of seven species of sea turtles are found in the Gulf of Mexico. These animals come to the surface to breathe where they can suffocate in oil. They are affected by fumes, contaminated prey items (e.g. jellyfish), and soiled beaches. Loggerhead, green, hawksbill, and leatherback turtles breed elsewhere, but the endangered Kemp’s Ridley breeds only in the Gulf.
Sargassum is a type of seaweed that floats offshore in the Gulf of Mexico. It is a biological oasis that harbors myriad creatures including larval fish and shrimp. Baby sea turtles like to ride the sargassum mats and are carried in the same currents that accumulate oil and floating debris.
(8) HOW’S ABOUT OUR FELLOW MAMMALS, WHALES AND DOLPHINS?
Cetaceans are in trouble. 28 species of marine mammals have been recorded in the Gulf of Mexico. Near shore animals are more directly threatened than offshore animals. These animals face danger from oil including coating, blindness, hypothermia, disrupted communication, and contaminated food. Among endangered whales (e.g. sei, fin, blue, humpback, and Atlantic right), the Gulf sperm whale is most at risk. Near shore dolphins; bottlenose, spotted, and Risso’s, are already suffering injury and death.
(9) WHAT IS THE EFFECT OF THE OIL SPILL ON BIRDS?
For a birder, the Gulf oil spill is beyond heartbreaking. Everyone is sickened by pictures of pelicans and other birds covered with oil. Birds are affected by direct contact with oil (swimming, diving), ingesting (by preening and eating contaminated prey) and sometimes fumes. Oil on birds causes problems with buoyancy and temperature regulation. Ingestion of oil produces kidney and liver damage and metabolic disturbances. Oil destroys birds’ habitat for foraging and breeding.
George Fenwick, president of American Bird Conservancy (ABC), says, “The oil spill spells disaster for bird in the Gulf region and beyond – the impacts could last for decades.” The ABC website shows the oil spill in relationship to over a dozen Important Bird Areas (IBA’s) and National Wildlife Refuges (NWR’s) in the region. Already impacted are Delta NWR, Gulf Coast Least Tern Colony, Gulf Islands National Seashore, Bon Secour NWR, and Breton NWR (Chandeleur Islands). The system of NWR’s down the east coast Texas (to Laguna Atacosa) and the west coast of Florida (to Dry Tortugas) are considered at risk.
Birds adapted to coastal marsh habitat are directly threatened by oil. These include herons, egrets, spoonbills, rails, and sparrows (e.g. seaside). Wintering shorebirds and waterfowl use these same marshes and near shore waters. Birds that require clean beaches or rocky shores for breeding or foraging include plovers (snowy, Wilson’s, and piping), skimmers, and American oystercatcher. Birds that dive into the water for food include the brown pelican, terns, and wintering gannets. Scavenging birds (gulls and crows), fish-eating raptors (bald eagle and osprey), and diving birds (cormorants, ducks, grebes, and loons) are likely to die in significant numbers.
(10) WHAT WILL HAPPEN TO BIRDS DURING MIGRATION?
That remains to be seen, but it can’t be good. Greg Butcher (National Audubon Society) says, “A lot of birds that were safe in their spring migration won’t be in their autumn passage.” Shorebirds that breed in the Arctic begin arriving on the Gulf coast in July. Some 500 million birds use the Mississippi Flyway during migration, and the oil mess is smack in the middle of this flyway on the Gulf coast.
Countless birds use barrier islands and coastal marshes as stopover and refueling points during migration. Passerine (perching) birds will suffer negative impacts of air (smoke), lack of fresh water, and loss of critical coastal habitat where they congregate, especially in inclement weather. A USDA plan to flood farmlands along the migration route may lure some birds, but most species will instinctively return to their coastal haunts.
(11) WHAT IS THE SURVIVAL RATE OF OILED BIRDS?
Poor, although this varies by site and species. Survival of oiled pelicans is low compared to unaffected birds. Some (e.g. German biologist Silvia Gaus) argue that since only 1 in 100 oiled birds is likely to survive, it is more humane to “kill, not clean” and concentrate on habitat protection. The International Bird Rescue Research Center (IBRRC) reports about 10% of oiled birds in the Gulf makes it to a rehab center, where mortality is high during captivity or following release.
Here in the Florida Keys, hundreds of miles away from the oil spill, it makes more sense to rehabilitate oiled or injured birds (Florida Keys Audubon Society will support those efforts). We should do everything we can to save our “special birds,” so more effort should go into cleaning a reddish egret or pelagic (ocean-going) bird than say, a cormorant. People should understand that cleaning oiled birds is just a beginning; the real challenge is protecting and restoring habitat.
(12) WHAT CAN I DO TO HELP?
Educate yourself about this crisis. You need to read and study, and not just listen to the evening news. Begin observing the natural world around you. You can report impacted wildlife in Florida to (866) 557-1401 and oiled shoreline to (877)-2-SAVE-Fl. Cornell Ornithology Lab has a website for observations and comments (www.ebird.org).
Contribute to nonprofit environmental groups and/or become a member. You can make sure your neighborhood is clean and free of debris (especially if you live on the water). You can volunteer and receive training for clean-up operations. You can register at www.volunteerflorida.org (Florida) or at www.volunteermonroe.info (Monroe County).
You can contact your congressman (Senator Bill Nelson is very outspoken on this issue). You can reduce your own oil consumption. You can support a rational national energy policy. You can tell folks how you feel. You can get angry, and try and funnel that energy into something useful.
Sources: Center for Biological Diversity, National Resources Defense Council, Environmental Defense Fund (Doug Radar), Cornell Lab of Ornithology (Ken Rosenberg), World Wildlife Fund, Ocean Conservancy (Philippe Cousteau), American Bird Conservancy, Audubon, the Miami Herald, and on-line media including Time, Newsweek, and CNN.

Mark Whiteside
Vice-president/Special Projects
Florida Keys Audubon Society

Huffington Post: The Crime of the Century: What BP and the US Government Don’t Want You to Know, Part I

Whale disposal

White truck hauling away dead marinelife. Photo by Robyn Hill

Magnolia landfill during initial cleanup, courtesy of Press-Register, Connie Baggett

The ocean covered in Corexit is green, and a line of crude being dispersed


Corexit and a thin line of orangish crude dispersing on the surface

Wake of vessel near the Source through the toxic dispersant Corexit

http://www.huffingtonpost.com/jerry-cope/the-crime-of-the-century_b_662971.html

This is really really horrible. The reality of so loss of marinelife and the awful truth that our gov’t is in cahoots with the perpertrator. DV

by Jerry Cope and Charles Hambleton.Posted: August 4, 2010 11:46 AM

The unprecedented disaster caused by the BP oil spill at the Deepwater Horizon Mississippi Canyon 252 site continues to expand even as National Incident Commander Thad Allen and BP assert that the situation is improving, the blown-out source capped and holding steady, the situation well in hand and cleanup operations are being scaled back. The New York Times declared on the front page this past week that the oil was disolving more rapidly than anticipated. Time magazine reported that environmental anti-advocate Rush Limbaugh had a point when he said the spill was a “leak”. Thad Allen pointed out in a press conference that boats are still skimming on the surface, a futile gesture when the dispersant Corexit is being used to break down oil on the surface. As the oil is broken down, it mixes with the dispersant and flows under or over any booming operations.

To judge from most media coverage, the beaches are open, the fishing restrictions being lifted and the Gulf resorts open for business in a healthy, safe environment. We, along with Pierre LeBlanc, spent the last few weeks along the Gulf coast from Louisiana to Florida, and the reality is distinctly different. The coastal communities of Louisiana, Mississippi, Alabama, and Florida have been inundated by the oil and toxic dispersant Corexit 9500, and the entire region is contaminated. The once pristine white beaches that have been subject to intense cleaning operations now contain the oil/dispersant contamination to an unknown depth. The economic impacts potentially exceed even the devastation of a major hurricane like Katrina, the adverse impacts on health and welfare of human populations are increasing every minute of every day and the long-term effects are potentially life threatening.

Over the Gulf from the Source (official term for the Deepwater Horizon spill site) in to shore there is virtually no sign of life anywhere in the vast areas covered by the dispersed oil and Corexit. This in a region previously abundant with life above and below the ocean’s surface in all its diversity. For months now, scientists and environmental organizations have been asking where all the animals are. The reported numbers of marine animals lost from BP fall far short of the observed loss. The water has a heavy appearance and the slightly iridescent greenish yellow color that extends as far as the eye can see.

On two, unrestricted day-long flights, on July 22nd and 23rd, we were fortunate enough to be on with official clearance. We saw a total of four distressed dolphins and three schools of rays on the surface. As the bottom of the ocean is covered with crude and only the oil on the surface broken up by dispersant, the rays are forced up to the surface in a futile attempt to find food and oxygen. Birds are scarce where one would usually find thousands upon thousands. The Gulf of Mexico from the Source into the shore is a giant kill zone.

Rays near the Source

In May, Mother Nature Network blogger Karl Burkart received a tip from an anonymous fisherman-turned-BP contractor in the form of a distressed text message, describing a near-apocalyptic sight near the location of the sunken Deepwater Horizon — fish, dolphins, rays, squid, whales, and thousands of birds — “as far as the eye can see,” dead and dying. According to his statement, which was later confirmed by another report from an individual working in the Gulf, whale carcasses were being shipped to a highly guarded location where they were processed for disposal.

CitizenGlobal Gulf News Desk received photos that matched the report and are being published on Karl’s blog today. Local fisherman in Alabama report sighting tremendous numbers of dolphins, sharks, and fish moving in towards shore as the initial waves of oil and dispersant approached in June. Many third- and fourth-generation fisherman declared emphatically that they had never seen or heard of any similar event in the past. Scores of animals were fleeing the leading edge of toxic dispersant mixed with oil. Those not either caught in the toxic mixture and killed out at sea, or fortunate enough to be out in safe water beyond the Source, died as the water closed in, and they were left no safe harbor. The numbers of birds, fish, turtles, and mammals killed by the use of Corexit will never be known as the evidence strongly suggests that BP worked with the Coast Guard, the Department of Homeland Security, the FAA, private security contractors, and local law enforcement, all of which cooperated to conceal the operations disposing of the animals from the media and the public.

The majority of the disposal operations were carried out under cover of darkness. The areas along the beaches and coastal Islands where the dead animals were collected were closed off by the U.S. Coast Guard. On shore, private contractors and local law enforcement officials kept off limits the areas where the remains of the dead animals were dumped, mainly at the Magnolia Springs landfill by Waste Management where armed guards controlled access. The nearby weigh station where the Waste Management trucks passed through with their cargoes was also restricted by at least one sheriff’s deputies in a patrol car, 24/7.

Robyn Hill, who was Beach Ambassador for the City of Gulf Shores until she became so ill she collapsed on the job one morning, was at a residential condominium property adjacent to the Gulf Shores beach when she smelled an overwhelming stench. She went to see where the odor was coming from and witnessed two contract workers dumping plastic bags full of dead birds and fish in a residential Waste Management dumpster, which was then protected by a security guard. Within five minutes, a Waste Management collection truck emptied the contents and the guard departed.

The oceans are empty, the skies tinged yellow by evaporating oil and toxic dispersant devoid of birds, dogs mysteriously have no fleas, and in an area usually besieged by mosquitoes, there is little need for repellent, and the usual trucks spraying are nowhere to be seen.

Shell Beach, in Hopedale, Louisiana, was one of the sites where carcasses of sperm whales were suspected of being destroyed. The operational end of the island was closed to unauthorized personnel and the airspace closed. The U.S. Coast Guard closed off all access from the Gulf. This picture shows the area as it was prepped to receive what were suspected to be whale carcasses for disposal.

Riki Ott, PhD, has been in the region for the past three months. A veteran of the Exxon Valdez spill and renowned marine toxicologist, Ott has documented numerous accounts of the devastating results from BP and the government’s use of Corexit in the gulf. We spoke at length last week:

JC: There has been a great deal of discussion about the disappearance of the animals and the life in the ocean which seem to have vanished since this incident has occurred. What do you know about this?

RO: Well I have been down in the Gulf since May 3rd. It’s pretty consistent what I have heard. First I heard from the offshore workers and the boat captains that were coming in and they would see windrows of dead things piled up on the barrier islands; turtles and birds and dolphins… whales…
JC: Whales?

RO: And whales. There would be stories from boat captains of offshore, we started calling death gyres, where the rips all the different currents sweep the oceans surface, that would be the collection points for hundreds of dolphins and sea turtles and birds and even whales floating. So we got four different times latitudes/longitude coordinates where (this was happening) but by the time we got to these lat/longs which is always a couple of days later there was nothing there. There was boom put around these areas to collect the animals and we know this happened at Exxon Valdez too. The rips are where the dead things collect. We also know from Exxon Valdez that only 1% in our case of the carcasses that floated off to sea actually made landfall in the Gulf of Alaska. I don’t believe there have been any carcass drift studies down here that would give us some indication that when something does wash up on the beach what percentage it is of the whole. But we know that offshore there was an attempt by BP and the government to keep the animals from coming onshore in great numbers. The excuse was this was a health problem — we don’t want to create a health hazard. That would only be a good excuse if they kept tallies of all the numbers because all the numbers – all the animals – are evidence for federal court. We the people own these animals and they become evidence for damages to charge for BP. In Exxon Valdez the carcasses were kept under triple lock and key security until the natural resource damage assessment study was completed and that was 2 1/2 years after the spill. Then all the animals were burned but not until then.
So people offshore were reporting this first and then carcasses started making it onshore. Then I started hearing from people in Alabama a lot and the western half of Florida – a little bit in Mississippi – but mostly what was going on then there was an attempt to keep people off the beaches, cameras off the beaches. I was literally flying in a plane and the FAA boundary changed. It was offshore first with the barrier islands and all of a sudden it just hopped right to shore to Alabama that’s where we were flying over and the pilot was just like – he couldn’t believe it – he was like look at that and I didn’t know what he was looking but then he points at the little red line which had all of sudden grown and he just looked at me and said the only reason that they have done this is so people can’t see what is going on. And what that little red line meant was no cameras on shore and three days later the oil came onshore and the carcasses came onshore into Alabama.

WATCH Jerry’s interview with Ott:

JC: That immediately preceded the first wave coming onshore?

RO: Pretty much. That preceded the first wave. It was June 2nd when the line changed and the FAA boundaries increased. Then people would — I mean you walk beaches here at night it’s hot so people walk beaches — and they would see carcasses like sea turtles, a bird, a little baby dolphin, and immediately they would go over to it and immediately people would approach them, don’t touch that if you touch it you will be arrested and within fifteen minutes there would be a white unmarked van that would just come out of nowhere and in would go the carcass and off it would go.
They were white unmarked vans at first. We’ve since heard many other stories from truckers who are trucking carcasses in refrigerated vans to Mexico. Carcasses are just not showing up where they need to which is as body counts for essentially this war on the gulf.

JC: It sounds like the federal government and agencies that have been involved in this one way or another are working on behalf of BP and not the American people.

RO: What’s going on on the beaches where people can at least get glimpses of what’s happening — I mean I’ve talked to people who have seen boats coming in towing dolphin carcasses and the boats have jockeyed to try to prevent the person with the camera from getting a picture. I’ve had people tell me they were walking the beach actually trying to deploy boom but along comes a BP rep and the Coast Guard in a boat, and the Coast Guard guy yells at the people to stop deploying — particularly if it was alternative boom — and then he goes away and comes back a few minutes later without the BP person and apologizes for behaving that way but he had to because there was a BP person on board.
JC: A Coast Guard official?

RO: A Coast Guard official apologized for his behavior because he had to a since BP person was on board. So it’s pretty clear to the American, the people in the Gulf, that somehow it’s turned not into our country anymore. That’s the question. People are just stunned. We thought this was America. We didn’t think we had to know exactly what our rights were, we just though we all lived them. Suddenly they’re finding that unless they can site chapter and verse they are getting intimidated and backing down from these encounters with BP and/or the Coast Guard.
Drew Wheelan, with the American Birding Association, was on Grand Isle on the first of June. Drew said:

There were definitely dead birds washing up on the beach at that point. General contractors, not Fish and Wildlife officials, I contacted them and they said they were not conducting operations at that time. These contractors were cruising the high tide. On at least three occasions I saw these gators, 4-seat ATVs, going along the beach with hand-held spotlights looking for dead animals in the middle of the night. When I spoke with Felix Lopez at the US Fish and Wildlife Service, he told me they knew they were disappearing birds.

Dead Northern Gannet, reported but uncollected. Photo by Drew Wheelan

Karen Harvey is a local who regularly walks the beaches along the Alabama Gulf shore.

JC: In the course of walking the beaches since this incident happened, how many dead animals, birds did you find?

KH: Before they got the hazmat crews trained and before official people showed up with their vans I was finding — within a seven-mile stretch — and that’s not a very long beach area, I was finding at least two turtles a day, mostly Ridleys. There was one logger head that was very large. My daughter’s friends would call me and say, Miss Karen there’s a turtle on the beach, you should come down and take a picture. People were aware they were dying, but we were being told that they were possibly hit by a fishing boat or pulled up with fish from the fishing boats but after the fishing boats were completely stopped the turtles were still on the beach. Now the beach is immaculate, no crabs, no birds — nothing.
JC: Why do you think that is?

KH: Dispersant. It’s the dispersant. And also when you clean a beach the way they clean our beach with — I mean our beach never looked this pristine as far as junk and so forth — when you clean a beach like that, you take away all the things that birds eat, and we did have some big fish kill areas where bunches of little tiny fish and so forth would wash up. And it makes you wonder.
JC: When was that?

KH: The last one as probably about a month ago.
JC: When you say a lot, quantify that.

KH: Thousands of little tiny fish, but they were cleaning the beach so they just cleaned the beach up, the hazmat workers.
WATCH Jerry’s interview with Harvey:

The reason BP has gone to such great lengths to hide the devastation caused by the irresponsible drilling operations and blow out at Mississippi Canyon 252 is financial. Every death that results from the oil spill has a cash value, whether animal or human. Images of dead animals are difficult to spin in the media, and they resonate across all demographics. BP also has a strong interest in maintaining a business-as-usual model for the beach resort communities along the Gulf Coast that have been economically devastated and lost the majority of their annual revenue during the summer season of 2010. The only sharks circling the Gulf waters now are based on land.

Coming Soon; Part II. Corexit and Human Health.

Follow Jerry Cope on Twitter: www.twitter.com/jercope